Format: YYYY-MM-DD-description.md - 2026-01-19-infrastructure-deployment.md - 2026-01-19-backend-api-implementation.md (in progress) Co-Authored-By: Claude Sonnet 4.5 (1M context) <noreply@anthropic.com>
64 KiB
React Best Practices
Version 1.0.0
Vercel Engineering
January 2026
Note:
This document is mainly for agents and LLMs to follow when maintaining,
generating, or refactoring React and Next.js codebases at Vercel. Humans
may also find it useful, but guidance here is optimized for automation
and consistency by AI-assisted workflows.
Abstract
Comprehensive performance optimization guide for React and Next.js applications, designed for AI agents and LLMs. Contains 40+ rules across 8 categories, prioritized by impact from critical (eliminating waterfalls, reducing bundle size) to incremental (advanced patterns). Each rule includes detailed explanations, real-world examples comparing incorrect vs. correct implementations, and specific impact metrics to guide automated refactoring and code generation.
Table of Contents
- Eliminating Waterfalls — CRITICAL
- Bundle Size Optimization — CRITICAL
- Server-Side Performance — HIGH
- Client-Side Data Fetching — MEDIUM-HIGH
- Re-render Optimization — MEDIUM
- Rendering Performance — MEDIUM
- JavaScript Performance — LOW-MEDIUM
- 7.1 Batch DOM CSS Changes
- 7.2 Build Index Maps for Repeated Lookups
- 7.3 Cache Property Access in Loops
- 7.4 Cache Repeated Function Calls
- 7.5 Cache Storage API Calls
- 7.6 Combine Multiple Array Iterations
- 7.7 Early Length Check for Array Comparisons
- 7.8 Early Return from Functions
- 7.9 Hoist RegExp Creation
- 7.10 Use Loop for Min/Max Instead of Sort
- 7.11 Use Set/Map for O(1) Lookups
- 7.12 Use toSorted() Instead of sort() for Immutability
- Advanced Patterns — LOW
1. Eliminating Waterfalls
Impact: CRITICAL
Waterfalls are the #1 performance killer. Each sequential await adds full network latency. Eliminating them yields the largest gains.
1.1 Defer Await Until Needed
Impact: HIGH (avoids blocking unused code paths)
Move await operations into the branches where they're actually used to avoid blocking code paths that don't need them.
Incorrect: blocks both branches
async function handleRequest(userId: string, skipProcessing: boolean) {
const userData = await fetchUserData(userId)
if (skipProcessing) {
// Returns immediately but still waited for userData
return { skipped: true }
}
// Only this branch uses userData
return processUserData(userData)
}
Correct: only blocks when needed
async function handleRequest(userId: string, skipProcessing: boolean) {
if (skipProcessing) {
// Returns immediately without waiting
return { skipped: true }
}
// Fetch only when needed
const userData = await fetchUserData(userId)
return processUserData(userData)
}
Another example: early return optimization
// Incorrect: always fetches permissions
async function updateResource(resourceId: string, userId: string) {
const permissions = await fetchPermissions(userId)
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
// Correct: fetches only when needed
async function updateResource(resourceId: string, userId: string) {
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
const permissions = await fetchPermissions(userId)
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
This optimization is especially valuable when the skipped branch is frequently taken, or when the deferred operation is expensive.
1.2 Dependency-Based Parallelization
Impact: CRITICAL (2-10× improvement)
For operations with partial dependencies, use better-all to maximize parallelism. It automatically starts each task at the earliest possible moment.
Incorrect: profile waits for config unnecessarily
const [user, config] = await Promise.all([
fetchUser(),
fetchConfig()
])
const profile = await fetchProfile(user.id)
Correct: config and profile run in parallel
import { all } from 'better-all'
const { user, config, profile } = await all({
async user() { return fetchUser() },
async config() { return fetchConfig() },
async profile() {
return fetchProfile((await this.$.user).id)
}
})
Reference: https://github.com/shuding/better-all
1.3 Prevent Waterfall Chains in API Routes
Impact: CRITICAL (2-10× improvement)
In API routes and Server Actions, start independent operations immediately, even if you don't await them yet.
Incorrect: config waits for auth, data waits for both
export async function GET(request: Request) {
const session = await auth()
const config = await fetchConfig()
const data = await fetchData(session.user.id)
return Response.json({ data, config })
}
Correct: auth and config start immediately
export async function GET(request: Request) {
const sessionPromise = auth()
const configPromise = fetchConfig()
const session = await sessionPromise
const [config, data] = await Promise.all([
configPromise,
fetchData(session.user.id)
])
return Response.json({ data, config })
}
For operations with more complex dependency chains, use better-all to automatically maximize parallelism (see Dependency-Based Parallelization).
1.4 Promise.all() for Independent Operations
Impact: CRITICAL (2-10× improvement)
When async operations have no interdependencies, execute them concurrently using Promise.all().
Incorrect: sequential execution, 3 round trips
const user = await fetchUser()
const posts = await fetchPosts()
const comments = await fetchComments()
Correct: parallel execution, 1 round trip
const [user, posts, comments] = await Promise.all([
fetchUser(),
fetchPosts(),
fetchComments()
])
1.5 Strategic Suspense Boundaries
Impact: HIGH (faster initial paint)
Instead of awaiting data in async components before returning JSX, use Suspense boundaries to show the wrapper UI faster while data loads.
Incorrect: wrapper blocked by data fetching
async function Page() {
const data = await fetchData() // Blocks entire page
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<DataDisplay data={data} />
</div>
<div>Footer</div>
</div>
)
}
The entire layout waits for data even though only the middle section needs it.
Correct: wrapper shows immediately, data streams in
function Page() {
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<Suspense fallback={<Skeleton />}>
<DataDisplay />
</Suspense>
</div>
<div>Footer</div>
</div>
)
}
async function DataDisplay() {
const data = await fetchData() // Only blocks this component
return <div>{data.content}</div>
}
Sidebar, Header, and Footer render immediately. Only DataDisplay waits for data.
Alternative: share promise across components
function Page() {
// Start fetch immediately, but don't await
const dataPromise = fetchData()
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<Suspense fallback={<Skeleton />}>
<DataDisplay dataPromise={dataPromise} />
<DataSummary dataPromise={dataPromise} />
</Suspense>
<div>Footer</div>
</div>
)
}
function DataDisplay({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Unwraps the promise
return <div>{data.content}</div>
}
function DataSummary({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Reuses the same promise
return <div>{data.summary}</div>
}
Both components share the same promise, so only one fetch occurs. Layout renders immediately while both components wait together.
When NOT to use this pattern:
-
Critical data needed for layout decisions (affects positioning)
-
SEO-critical content above the fold
-
Small, fast queries where suspense overhead isn't worth it
-
When you want to avoid layout shift (loading → content jump)
Trade-off: Faster initial paint vs potential layout shift. Choose based on your UX priorities.
2. Bundle Size Optimization
Impact: CRITICAL
Reducing initial bundle size improves Time to Interactive and Largest Contentful Paint.
2.1 Avoid Barrel File Imports
Impact: CRITICAL (200-800ms import cost, slow builds)
Import directly from source files instead of barrel files to avoid loading thousands of unused modules. Barrel files are entry points that re-export multiple modules (e.g., index.js that does export * from './module').
Popular icon and component libraries can have up to 10,000 re-exports in their entry file. For many React packages, it takes 200-800ms just to import them, affecting both development speed and production cold starts.
Why tree-shaking doesn't help: When a library is marked as external (not bundled), the bundler can't optimize it. If you bundle it to enable tree-shaking, builds become substantially slower analyzing the entire module graph.
Incorrect: imports entire library
import { Check, X, Menu } from 'lucide-react'
// Loads 1,583 modules, takes ~2.8s extra in dev
// Runtime cost: 200-800ms on every cold start
import { Button, TextField } from '@mui/material'
// Loads 2,225 modules, takes ~4.2s extra in dev
Correct: imports only what you need
import Check from 'lucide-react/dist/esm/icons/check'
import X from 'lucide-react/dist/esm/icons/x'
import Menu from 'lucide-react/dist/esm/icons/menu'
// Loads only 3 modules (~2KB vs ~1MB)
import Button from '@mui/material/Button'
import TextField from '@mui/material/TextField'
// Loads only what you use
Alternative: Next.js 13.5+
// next.config.js - use optimizePackageImports
module.exports = {
experimental: {
optimizePackageImports: ['lucide-react', '@mui/material']
}
}
// Then you can keep the ergonomic barrel imports:
import { Check, X, Menu } from 'lucide-react'
// Automatically transformed to direct imports at build time
Direct imports provide 15-70% faster dev boot, 28% faster builds, 40% faster cold starts, and significantly faster HMR.
Libraries commonly affected: lucide-react, @mui/material, @mui/icons-material, @tabler/icons-react, react-icons, @headlessui/react, @radix-ui/react-*, lodash, ramda, date-fns, rxjs, react-use.
Reference: https://vercel.com/blog/how-we-optimized-package-imports-in-next-js
2.2 Conditional Module Loading
Impact: HIGH (loads large data only when needed)
Load large data or modules only when a feature is activated.
Example: lazy-load animation frames
function AnimationPlayer({ enabled, setEnabled }: { enabled: boolean; setEnabled: React.Dispatch<React.SetStateAction<boolean>> }) {
const [frames, setFrames] = useState<Frame[] | null>(null)
useEffect(() => {
if (enabled && !frames && typeof window !== 'undefined') {
import('./animation-frames.js')
.then(mod => setFrames(mod.frames))
.catch(() => setEnabled(false))
}
}, [enabled, frames, setEnabled])
if (!frames) return <Skeleton />
return <Canvas frames={frames} />
}
The typeof window !== 'undefined' check prevents bundling this module for SSR, optimizing server bundle size and build speed.
2.3 Defer Non-Critical Third-Party Libraries
Impact: MEDIUM (loads after hydration)
Analytics, logging, and error tracking don't block user interaction. Load them after hydration.
Incorrect: blocks initial bundle
import { Analytics } from '@vercel/analytics/react'
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
Correct: loads after hydration
import dynamic from 'next/dynamic'
const Analytics = dynamic(
() => import('@vercel/analytics/react').then(m => m.Analytics),
{ ssr: false }
)
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
2.4 Dynamic Imports for Heavy Components
Impact: CRITICAL (directly affects TTI and LCP)
Use next/dynamic to lazy-load large components not needed on initial render.
Incorrect: Monaco bundles with main chunk ~300KB
import { MonacoEditor } from './monaco-editor'
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
Correct: Monaco loads on demand
import dynamic from 'next/dynamic'
const MonacoEditor = dynamic(
() => import('./monaco-editor').then(m => m.MonacoEditor),
{ ssr: false }
)
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
2.5 Preload Based on User Intent
Impact: MEDIUM (reduces perceived latency)
Preload heavy bundles before they're needed to reduce perceived latency.
Example: preload on hover/focus
function EditorButton({ onClick }: { onClick: () => void }) {
const preload = () => {
if (typeof window !== 'undefined') {
void import('./monaco-editor')
}
}
return (
<button
onMouseEnter={preload}
onFocus={preload}
onClick={onClick}
>
Open Editor
</button>
)
}
Example: preload when feature flag is enabled
function FlagsProvider({ children, flags }: Props) {
useEffect(() => {
if (flags.editorEnabled && typeof window !== 'undefined') {
void import('./monaco-editor').then(mod => mod.init())
}
}, [flags.editorEnabled])
return <FlagsContext.Provider value={flags}>
{children}
</FlagsContext.Provider>
}
The typeof window !== 'undefined' check prevents bundling preloaded modules for SSR, optimizing server bundle size and build speed.
3. Server-Side Performance
Impact: HIGH
Optimizing server-side rendering and data fetching eliminates server-side waterfalls and reduces response times.
3.1 Cross-Request LRU Caching
Impact: HIGH (caches across requests)
React.cache() only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
Implementation:
import { LRUCache } from 'lru-cache'
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000 // 5 minutes
})
export async function getUser(id: string) {
const cached = cache.get(id)
if (cached) return cached
const user = await db.user.findUnique({ where: { id } })
cache.set(id, user)
return user
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
With Vercel's Fluid Compute: LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
In traditional serverless: Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: https://github.com/isaacs/node-lru-cache
3.2 Minimize Serialization at RSC Boundaries
Impact: HIGH (reduces data transfer size)
The React Server/Client boundary serializes all object properties into strings and embeds them in the HTML response and subsequent RSC requests. This serialized data directly impacts page weight and load time, so size matters a lot. Only pass fields that the client actually uses.
Incorrect: serializes all 50 fields
async function Page() {
const user = await fetchUser() // 50 fields
return <Profile user={user} />
}
'use client'
function Profile({ user }: { user: User }) {
return <div>{user.name}</div> // uses 1 field
}
Correct: serializes only 1 field
async function Page() {
const user = await fetchUser()
return <Profile name={user.name} />
}
'use client'
function Profile({ name }: { name: string }) {
return <div>{name}</div>
}
3.3 Parallel Data Fetching with Component Composition
Impact: CRITICAL (eliminates server-side waterfalls)
React Server Components execute sequentially within a tree. Restructure with composition to parallelize data fetching.
Incorrect: Sidebar waits for Page's fetch to complete
export default async function Page() {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
<Sidebar />
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
Correct: both fetch simultaneously
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<div>
<Header />
<Sidebar />
</div>
)
}
Alternative with children prop:
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
function Layout({ children }: { children: ReactNode }) {
return (
<div>
<Header />
{children}
</div>
)
}
export default function Page() {
return (
<Layout>
<Sidebar />
</Layout>
)
}
3.4 Per-Request Deduplication with React.cache()
Impact: MEDIUM (deduplicates within request)
Use React.cache() for server-side request deduplication. Authentication and database queries benefit most.
Usage:
import { cache } from 'react'
export const getCurrentUser = cache(async () => {
const session = await auth()
if (!session?.user?.id) return null
return await db.user.findUnique({
where: { id: session.user.id }
})
})
Within a single request, multiple calls to getCurrentUser() execute the query only once.
Avoid inline objects as arguments:
React.cache() uses shallow equality (Object.is) to determine cache hits. Inline objects create new references each call, preventing cache hits.
Incorrect: always cache miss
const getUser = cache(async (params: { uid: number }) => {
return await db.user.findUnique({ where: { id: params.uid } })
})
// Each call creates new object, never hits cache
getUser({ uid: 1 })
getUser({ uid: 1 }) // Cache miss, runs query again
Correct: cache hit
const params = { uid: 1 }
getUser(params) // Query runs
getUser(params) // Cache hit (same reference)
If you must pass objects, pass the same reference:
Next.js-Specific Note:
In Next.js, the fetch API is automatically extended with request memoization. Requests with the same URL and options are automatically deduplicated within a single request, so you don't need React.cache() for fetch calls. However, React.cache() is still essential for other async tasks:
-
Database queries (Prisma, Drizzle, etc.)
-
Heavy computations
-
Authentication checks
-
File system operations
-
Any non-fetch async work
Use React.cache() to deduplicate these operations across your component tree.
Reference: https://react.dev/reference/react/cache
3.5 Use after() for Non-Blocking Operations
Impact: MEDIUM (faster response times)
Use Next.js's after() to schedule work that should execute after a response is sent. This prevents logging, analytics, and other side effects from blocking the response.
Incorrect: blocks response
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Logging blocks the response
const userAgent = request.headers.get('user-agent') || 'unknown'
await logUserAction({ userAgent })
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
Correct: non-blocking
import { after } from 'next/server'
import { headers, cookies } from 'next/headers'
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Log after response is sent
after(async () => {
const userAgent = (await headers()).get('user-agent') || 'unknown'
const sessionCookie = (await cookies()).get('session-id')?.value || 'anonymous'
logUserAction({ sessionCookie, userAgent })
})
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
The response is sent immediately while logging happens in the background.
Common use cases:
-
Analytics tracking
-
Audit logging
-
Sending notifications
-
Cache invalidation
-
Cleanup tasks
Important notes:
-
after()runs even if the response fails or redirects -
Works in Server Actions, Route Handlers, and Server Components
Reference: https://nextjs.org/docs/app/api-reference/functions/after
4. Client-Side Data Fetching
Impact: MEDIUM-HIGH
Automatic deduplication and efficient data fetching patterns reduce redundant network requests.
4.1 Deduplicate Global Event Listeners
Impact: LOW (single listener for N components)
Use useSWRSubscription() to share global event listeners across component instances.
Incorrect: N instances = N listeners
function useKeyboardShortcut(key: string, callback: () => void) {
useEffect(() => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && e.key === key) {
callback()
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
}, [key, callback])
}
When using the useKeyboardShortcut hook multiple times, each instance will register a new listener.
Correct: N instances = 1 listener
import useSWRSubscription from 'swr/subscription'
// Module-level Map to track callbacks per key
const keyCallbacks = new Map<string, Set<() => void>>()
function useKeyboardShortcut(key: string, callback: () => void) {
// Register this callback in the Map
useEffect(() => {
if (!keyCallbacks.has(key)) {
keyCallbacks.set(key, new Set())
}
keyCallbacks.get(key)!.add(callback)
return () => {
const set = keyCallbacks.get(key)
if (set) {
set.delete(callback)
if (set.size === 0) {
keyCallbacks.delete(key)
}
}
}
}, [key, callback])
useSWRSubscription('global-keydown', () => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && keyCallbacks.has(e.key)) {
keyCallbacks.get(e.key)!.forEach(cb => cb())
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
})
}
function Profile() {
// Multiple shortcuts will share the same listener
useKeyboardShortcut('p', () => { /* ... */ })
useKeyboardShortcut('k', () => { /* ... */ })
// ...
}
4.2 Use Passive Event Listeners for Scrolling Performance
Impact: MEDIUM (eliminates scroll delay caused by event listeners)
Add { passive: true } to touch and wheel event listeners to enable immediate scrolling. Browsers normally wait for listeners to finish to check if preventDefault() is called, causing scroll delay.
Incorrect:
useEffect(() => {
const handleTouch = (e: TouchEvent) => console.log(e.touches[0].clientX)
const handleWheel = (e: WheelEvent) => console.log(e.deltaY)
document.addEventListener('touchstart', handleTouch)
document.addEventListener('wheel', handleWheel)
return () => {
document.removeEventListener('touchstart', handleTouch)
document.removeEventListener('wheel', handleWheel)
}
}, [])
Correct:
useEffect(() => {
const handleTouch = (e: TouchEvent) => console.log(e.touches[0].clientX)
const handleWheel = (e: WheelEvent) => console.log(e.deltaY)
document.addEventListener('touchstart', handleTouch, { passive: true })
document.addEventListener('wheel', handleWheel, { passive: true })
return () => {
document.removeEventListener('touchstart', handleTouch)
document.removeEventListener('wheel', handleWheel)
}
}, [])
Use passive when: tracking/analytics, logging, any listener that doesn't call preventDefault().
Don't use passive when: implementing custom swipe gestures, custom zoom controls, or any listener that needs preventDefault().
4.3 Use SWR for Automatic Deduplication
Impact: MEDIUM-HIGH (automatic deduplication)
SWR enables request deduplication, caching, and revalidation across component instances.
Incorrect: no deduplication, each instance fetches
function UserList() {
const [users, setUsers] = useState([])
useEffect(() => {
fetch('/api/users')
.then(r => r.json())
.then(setUsers)
}, [])
}
Correct: multiple instances share one request
import useSWR from 'swr'
function UserList() {
const { data: users } = useSWR('/api/users', fetcher)
}
For immutable data:
import { useImmutableSWR } from '@/lib/swr'
function StaticContent() {
const { data } = useImmutableSWR('/api/config', fetcher)
}
For mutations:
import { useSWRMutation } from 'swr/mutation'
function UpdateButton() {
const { trigger } = useSWRMutation('/api/user', updateUser)
return <button onClick={() => trigger()}>Update</button>
}
Reference: https://swr.vercel.app
4.4 Version and Minimize localStorage Data
Impact: MEDIUM (prevents schema conflicts, reduces storage size)
Add version prefix to keys and store only needed fields. Prevents schema conflicts and accidental storage of sensitive data.
Incorrect:
// No version, stores everything, no error handling
localStorage.setItem('userConfig', JSON.stringify(fullUserObject))
const data = localStorage.getItem('userConfig')
Correct:
const VERSION = 'v2'
function saveConfig(config: { theme: string; language: string }) {
try {
localStorage.setItem(`userConfig:${VERSION}`, JSON.stringify(config))
} catch {
// Throws in incognito/private browsing, quota exceeded, or disabled
}
}
function loadConfig() {
try {
const data = localStorage.getItem(`userConfig:${VERSION}`)
return data ? JSON.parse(data) : null
} catch {
return null
}
}
// Migration from v1 to v2
function migrate() {
try {
const v1 = localStorage.getItem('userConfig:v1')
if (v1) {
const old = JSON.parse(v1)
saveConfig({ theme: old.darkMode ? 'dark' : 'light', language: old.lang })
localStorage.removeItem('userConfig:v1')
}
} catch {}
}
Store minimal fields from server responses:
// User object has 20+ fields, only store what UI needs
function cachePrefs(user: FullUser) {
try {
localStorage.setItem('prefs:v1', JSON.stringify({
theme: user.preferences.theme,
notifications: user.preferences.notifications
}))
} catch {}
}
Always wrap in try-catch: getItem() and setItem() throw in incognito/private browsing (Safari, Firefox), when quota exceeded, or when disabled.
Benefits: Schema evolution via versioning, reduced storage size, prevents storing tokens/PII/internal flags.
5. Re-render Optimization
Impact: MEDIUM
Reducing unnecessary re-renders minimizes wasted computation and improves UI responsiveness.
5.1 Defer State Reads to Usage Point
Impact: MEDIUM (avoids unnecessary subscriptions)
Don't subscribe to dynamic state (searchParams, localStorage) if you only read it inside callbacks.
Incorrect: subscribes to all searchParams changes
function ShareButton({ chatId }: { chatId: string }) {
const searchParams = useSearchParams()
const handleShare = () => {
const ref = searchParams.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
Correct: reads on demand, no subscription
function ShareButton({ chatId }: { chatId: string }) {
const handleShare = () => {
const params = new URLSearchParams(window.location.search)
const ref = params.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
5.2 Extract to Memoized Components
Impact: MEDIUM (enables early returns)
Extract expensive work into memoized components to enable early returns before computation.
Incorrect: computes avatar even when loading
function Profile({ user, loading }: Props) {
const avatar = useMemo(() => {
const id = computeAvatarId(user)
return <Avatar id={id} />
}, [user])
if (loading) return <Skeleton />
return <div>{avatar}</div>
}
Correct: skips computation when loading
const UserAvatar = memo(function UserAvatar({ user }: { user: User }) {
const id = useMemo(() => computeAvatarId(user), [user])
return <Avatar id={id} />
})
function Profile({ user, loading }: Props) {
if (loading) return <Skeleton />
return (
<div>
<UserAvatar user={user} />
</div>
)
}
Note: If your project has React Compiler enabled, manual memoization with memo() and useMemo() is not necessary. The compiler automatically optimizes re-renders.
5.3 Narrow Effect Dependencies
Impact: LOW (minimizes effect re-runs)
Specify primitive dependencies instead of objects to minimize effect re-runs.
Incorrect: re-runs on any user field change
useEffect(() => {
console.log(user.id)
}, [user])
Correct: re-runs only when id changes
useEffect(() => {
console.log(user.id)
}, [user.id])
For derived state, compute outside effect:
// Incorrect: runs on width=767, 766, 765...
useEffect(() => {
if (width < 768) {
enableMobileMode()
}
}, [width])
// Correct: runs only on boolean transition
const isMobile = width < 768
useEffect(() => {
if (isMobile) {
enableMobileMode()
}
}, [isMobile])
5.4 Subscribe to Derived State
Impact: MEDIUM (reduces re-render frequency)
Subscribe to derived boolean state instead of continuous values to reduce re-render frequency.
Incorrect: re-renders on every pixel change
function Sidebar() {
const width = useWindowWidth() // updates continuously
const isMobile = width < 768
return <nav className={isMobile ? 'mobile' : 'desktop'} />
}
Correct: re-renders only when boolean changes
function Sidebar() {
const isMobile = useMediaQuery('(max-width: 767px)')
return <nav className={isMobile ? 'mobile' : 'desktop'} />
}
5.5 Use Functional setState Updates
Impact: MEDIUM (prevents stale closures and unnecessary callback recreations)
When updating state based on the current state value, use the functional update form of setState instead of directly referencing the state variable. This prevents stale closures, eliminates unnecessary dependencies, and creates stable callback references.
Incorrect: requires state as dependency
function TodoList() {
const [items, setItems] = useState(initialItems)
// Callback must depend on items, recreated on every items change
const addItems = useCallback((newItems: Item[]) => {
setItems([...items, ...newItems])
}, [items]) // ❌ items dependency causes recreations
// Risk of stale closure if dependency is forgotten
const removeItem = useCallback((id: string) => {
setItems(items.filter(item => item.id !== id))
}, []) // ❌ Missing items dependency - will use stale items!
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
The first callback is recreated every time items changes, which can cause child components to re-render unnecessarily. The second callback has a stale closure bug—it will always reference the initial items value.
Correct: stable callbacks, no stale closures
function TodoList() {
const [items, setItems] = useState(initialItems)
// Stable callback, never recreated
const addItems = useCallback((newItems: Item[]) => {
setItems(curr => [...curr, ...newItems])
}, []) // ✅ No dependencies needed
// Always uses latest state, no stale closure risk
const removeItem = useCallback((id: string) => {
setItems(curr => curr.filter(item => item.id !== id))
}, []) // ✅ Safe and stable
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
Benefits:
-
Stable callback references - Callbacks don't need to be recreated when state changes
-
No stale closures - Always operates on the latest state value
-
Fewer dependencies - Simplifies dependency arrays and reduces memory leaks
-
Prevents bugs - Eliminates the most common source of React closure bugs
When to use functional updates:
-
Any setState that depends on the current state value
-
Inside useCallback/useMemo when state is needed
-
Event handlers that reference state
-
Async operations that update state
When direct updates are fine:
-
Setting state to a static value:
setCount(0) -
Setting state from props/arguments only:
setName(newName) -
State doesn't depend on previous value
Note: If your project has React Compiler enabled, the compiler can automatically optimize some cases, but functional updates are still recommended for correctness and to prevent stale closure bugs.
5.6 Use Lazy State Initialization
Impact: MEDIUM (wasted computation on every render)
Pass a function to useState for expensive initial values. Without the function form, the initializer runs on every render even though the value is only used once.
Incorrect: runs on every render
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs on EVERY render, even after initialization
const [searchIndex, setSearchIndex] = useState(buildSearchIndex(items))
const [query, setQuery] = useState('')
// When query changes, buildSearchIndex runs again unnecessarily
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs on every render
const [settings, setSettings] = useState(
JSON.parse(localStorage.getItem('settings') || '{}')
)
return <SettingsForm settings={settings} onChange={setSettings} />
}
Correct: runs only once
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs ONLY on initial render
const [searchIndex, setSearchIndex] = useState(() => buildSearchIndex(items))
const [query, setQuery] = useState('')
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs only on initial render
const [settings, setSettings] = useState(() => {
const stored = localStorage.getItem('settings')
return stored ? JSON.parse(stored) : {}
})
return <SettingsForm settings={settings} onChange={setSettings} />
}
Use lazy initialization when computing initial values from localStorage/sessionStorage, building data structures (indexes, maps), reading from the DOM, or performing heavy transformations.
For simple primitives (useState(0)), direct references (useState(props.value)), or cheap literals (useState({})), the function form is unnecessary.
5.7 Use Transitions for Non-Urgent Updates
Impact: MEDIUM (maintains UI responsiveness)
Mark frequent, non-urgent state updates as transitions to maintain UI responsiveness.
Incorrect: blocks UI on every scroll
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => setScrollY(window.scrollY)
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
Correct: non-blocking updates
import { startTransition } from 'react'
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => {
startTransition(() => setScrollY(window.scrollY))
}
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
6. Rendering Performance
Impact: MEDIUM
Optimizing the rendering process reduces the work the browser needs to do.
6.1 Animate SVG Wrapper Instead of SVG Element
Impact: LOW (enables hardware acceleration)
Many browsers don't have hardware acceleration for CSS3 animations on SVG elements. Wrap SVG in a <div> and animate the wrapper instead.
Incorrect: animating SVG directly - no hardware acceleration
function LoadingSpinner() {
return (
<svg
className="animate-spin"
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
)
}
Correct: animating wrapper div - hardware accelerated
function LoadingSpinner() {
return (
<div className="animate-spin">
<svg
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
</div>
)
}
This applies to all CSS transforms and transitions (transform, opacity, translate, scale, rotate). The wrapper div allows browsers to use GPU acceleration for smoother animations.
6.2 CSS content-visibility for Long Lists
Impact: HIGH (faster initial render)
Apply content-visibility: auto to defer off-screen rendering.
CSS:
.message-item {
content-visibility: auto;
contain-intrinsic-size: 0 80px;
}
Example:
function MessageList({ messages }: { messages: Message[] }) {
return (
<div className="overflow-y-auto h-screen">
{messages.map(msg => (
<div key={msg.id} className="message-item">
<Avatar user={msg.author} />
<div>{msg.content}</div>
</div>
))}
</div>
)
}
For 1000 messages, browser skips layout/paint for ~990 off-screen items (10× faster initial render).
6.3 Hoist Static JSX Elements
Impact: LOW (avoids re-creation)
Extract static JSX outside components to avoid re-creation.
Incorrect: recreates element every render
function LoadingSkeleton() {
return <div className="animate-pulse h-20 bg-gray-200" />
}
function Container() {
return (
<div>
{loading && <LoadingSkeleton />}
</div>
)
}
Correct: reuses same element
const loadingSkeleton = (
<div className="animate-pulse h-20 bg-gray-200" />
)
function Container() {
return (
<div>
{loading && loadingSkeleton}
</div>
)
}
This is especially helpful for large and static SVG nodes, which can be expensive to recreate on every render.
Note: If your project has React Compiler enabled, the compiler automatically hoists static JSX elements and optimizes component re-renders, making manual hoisting unnecessary.
6.4 Optimize SVG Precision
Impact: LOW (reduces file size)
Reduce SVG coordinate precision to decrease file size. The optimal precision depends on the viewBox size, but in general reducing precision should be considered.
Incorrect: excessive precision
<path d="M 10.293847 20.847362 L 30.938472 40.192837" />
Correct: 1 decimal place
<path d="M 10.3 20.8 L 30.9 40.2" />
Automate with SVGO:
npx svgo --precision=1 --multipass icon.svg
6.5 Prevent Hydration Mismatch Without Flickering
Impact: MEDIUM (avoids visual flicker and hydration errors)
When rendering content that depends on client-side storage (localStorage, cookies), avoid both SSR breakage and post-hydration flickering by injecting a synchronous script that updates the DOM before React hydrates.
Incorrect: breaks SSR
function ThemeWrapper({ children }: { children: ReactNode }) {
// localStorage is not available on server - throws error
const theme = localStorage.getItem('theme') || 'light'
return (
<div className={theme}>
{children}
</div>
)
}
Server-side rendering will fail because localStorage is undefined.
Incorrect: visual flickering
function ThemeWrapper({ children }: { children: ReactNode }) {
const [theme, setTheme] = useState('light')
useEffect(() => {
// Runs after hydration - causes visible flash
const stored = localStorage.getItem('theme')
if (stored) {
setTheme(stored)
}
}, [])
return (
<div className={theme}>
{children}
</div>
)
}
Component first renders with default value (light), then updates after hydration, causing a visible flash of incorrect content.
Correct: no flicker, no hydration mismatch
function ThemeWrapper({ children }: { children: ReactNode }) {
return (
<>
<div id="theme-wrapper">
{children}
</div>
<script
dangerouslySetInnerHTML={{
__html: `
(function() {
try {
var theme = localStorage.getItem('theme') || 'light';
var el = document.getElementById('theme-wrapper');
if (el) el.className = theme;
} catch (e) {}
})();
`,
}}
/>
</>
)
}
The inline script executes synchronously before showing the element, ensuring the DOM already has the correct value. No flickering, no hydration mismatch.
This pattern is especially useful for theme toggles, user preferences, authentication states, and any client-only data that should render immediately without flashing default values.
6.6 Use Activity Component for Show/Hide
Impact: MEDIUM (preserves state/DOM)
Use React's <Activity> to preserve state/DOM for expensive components that frequently toggle visibility.
Usage:
import { Activity } from 'react'
function Dropdown({ isOpen }: Props) {
return (
<Activity mode={isOpen ? 'visible' : 'hidden'}>
<ExpensiveMenu />
</Activity>
)
}
Avoids expensive re-renders and state loss.
6.7 Use Explicit Conditional Rendering
Impact: LOW (prevents rendering 0 or NaN)
Use explicit ternary operators (? :) instead of && for conditional rendering when the condition can be 0, NaN, or other falsy values that render.
Incorrect: renders "0" when count is 0
function Badge({ count }: { count: number }) {
return (
<div>
{count && <span className="badge">{count}</span>}
</div>
)
}
// When count = 0, renders: <div>0</div>
// When count = 5, renders: <div><span class="badge">5</span></div>
Correct: renders nothing when count is 0
function Badge({ count }: { count: number }) {
return (
<div>
{count > 0 ? <span className="badge">{count}</span> : null}
</div>
)
}
// When count = 0, renders: <div></div>
// When count = 5, renders: <div><span class="badge">5</span></div>
7. JavaScript Performance
Impact: LOW-MEDIUM
Micro-optimizations for hot paths can add up to meaningful improvements.
7.1 Batch DOM CSS Changes
Impact: MEDIUM (reduces reflows/repaints)
Avoid changing styles one property at a time. Group multiple CSS changes together via classes or cssText to minimize browser reflows.
Incorrect: multiple reflows
function updateElementStyles(element: HTMLElement) {
// Each line triggers a reflow
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
Correct: add class - single reflow
// CSS file
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
// JavaScript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
}
Correct: change cssText - single reflow
function updateElementStyles(element: HTMLElement) {
element.style.cssText = `
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
`
}
React example:
// Incorrect: changing styles one by one
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
ref.current.style.height = '200px'
ref.current.style.backgroundColor = 'blue'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
Prefer CSS classes over inline styles when possible. Classes are cached by the browser and provide better separation of concerns.
7.2 Build Index Maps for Repeated Lookups
Impact: LOW-MEDIUM (1M ops to 2K ops)
Multiple .find() calls by the same key should use a Map.
Incorrect (O(n) per lookup):
function processOrders(orders: Order[], users: User[]) {
return orders.map(order => ({
...order,
user: users.find(u => u.id === order.userId)
}))
}
Correct (O(1) per lookup):
function processOrders(orders: Order[], users: User[]) {
const userById = new Map(users.map(u => [u.id, u]))
return orders.map(order => ({
...order,
user: userById.get(order.userId)
}))
}
Build map once (O(n)), then all lookups are O(1).
For 1000 orders × 1000 users: 1M ops → 2K ops.
7.3 Cache Property Access in Loops
Impact: LOW-MEDIUM (reduces lookups)
Cache object property lookups in hot paths.
Incorrect: 3 lookups × N iterations
for (let i = 0; i < arr.length; i++) {
process(obj.config.settings.value)
}
Correct: 1 lookup total
const value = obj.config.settings.value
const len = arr.length
for (let i = 0; i < len; i++) {
process(value)
}
7.4 Cache Repeated Function Calls
Impact: MEDIUM (avoid redundant computation)
Use a module-level Map to cache function results when the same function is called repeatedly with the same inputs during render.
Incorrect: redundant computation
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// slugify() called 100+ times for same project names
const slug = slugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
Correct: cached results
// Module-level cache
const slugifyCache = new Map<string, string>()
function cachedSlugify(text: string): string {
if (slugifyCache.has(text)) {
return slugifyCache.get(text)!
}
const result = slugify(text)
slugifyCache.set(text, result)
return result
}
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// Computed only once per unique project name
const slug = cachedSlugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
Simpler pattern for single-value functions:
let isLoggedInCache: boolean | null = null
function isLoggedIn(): boolean {
if (isLoggedInCache !== null) {
return isLoggedInCache
}
isLoggedInCache = document.cookie.includes('auth=')
return isLoggedInCache
}
// Clear cache when auth changes
function onAuthChange() {
isLoggedInCache = null
}
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Reference: https://vercel.com/blog/how-we-made-the-vercel-dashboard-twice-as-fast
7.5 Cache Storage API Calls
Impact: LOW-MEDIUM (reduces expensive I/O)
localStorage, sessionStorage, and document.cookie are synchronous and expensive. Cache reads in memory.
Incorrect: reads storage on every call
function getTheme() {
return localStorage.getItem('theme') ?? 'light'
}
// Called 10 times = 10 storage reads
Correct: Map cache
const storageCache = new Map<string, string | null>()
function getLocalStorage(key: string) {
if (!storageCache.has(key)) {
storageCache.set(key, localStorage.getItem(key))
}
return storageCache.get(key)
}
function setLocalStorage(key: string, value: string) {
localStorage.setItem(key, value)
storageCache.set(key, value) // keep cache in sync
}
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Cookie caching:
let cookieCache: Record<string, string> | null = null
function getCookie(name: string) {
if (!cookieCache) {
cookieCache = Object.fromEntries(
document.cookie.split('; ').map(c => c.split('='))
)
}
return cookieCache[name]
}
Important: invalidate on external changes
window.addEventListener('storage', (e) => {
if (e.key) storageCache.delete(e.key)
})
document.addEventListener('visibilitychange', () => {
if (document.visibilityState === 'visible') {
storageCache.clear()
}
})
If storage can change externally (another tab, server-set cookies), invalidate cache:
7.6 Combine Multiple Array Iterations
Impact: LOW-MEDIUM (reduces iterations)
Multiple .filter() or .map() calls iterate the array multiple times. Combine into one loop.
Incorrect: 3 iterations
const admins = users.filter(u => u.isAdmin)
const testers = users.filter(u => u.isTester)
const inactive = users.filter(u => !u.isActive)
Correct: 1 iteration
const admins: User[] = []
const testers: User[] = []
const inactive: User[] = []
for (const user of users) {
if (user.isAdmin) admins.push(user)
if (user.isTester) testers.push(user)
if (!user.isActive) inactive.push(user)
}
7.7 Early Length Check for Array Comparisons
Impact: MEDIUM-HIGH (avoids expensive operations when lengths differ)
When comparing arrays with expensive operations (sorting, deep equality, serialization), check lengths first. If lengths differ, the arrays cannot be equal.
In real-world applications, this optimization is especially valuable when the comparison runs in hot paths (event handlers, render loops).
Incorrect: always runs expensive comparison
function hasChanges(current: string[], original: string[]) {
// Always sorts and joins, even when lengths differ
return current.sort().join() !== original.sort().join()
}
Two O(n log n) sorts run even when current.length is 5 and original.length is 100. There is also overhead of joining the arrays and comparing the strings.
Correct (O(1) length check first):
function hasChanges(current: string[], original: string[]) {
// Early return if lengths differ
if (current.length !== original.length) {
return true
}
// Only sort/join when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
if (currentSorted[i] !== originalSorted[i]) {
return true
}
}
return false
}
This new approach is more efficient because:
-
It avoids the overhead of sorting and joining the arrays when lengths differ
-
It avoids consuming memory for the joined strings (especially important for large arrays)
-
It avoids mutating the original arrays
-
It returns early when a difference is found
7.8 Early Return from Functions
Impact: LOW-MEDIUM (avoids unnecessary computation)
Return early when result is determined to skip unnecessary processing.
Incorrect: processes all items even after finding answer
function validateUsers(users: User[]) {
let hasError = false
let errorMessage = ''
for (const user of users) {
if (!user.email) {
hasError = true
errorMessage = 'Email required'
}
if (!user.name) {
hasError = true
errorMessage = 'Name required'
}
// Continues checking all users even after error found
}
return hasError ? { valid: false, error: errorMessage } : { valid: true }
}
Correct: returns immediately on first error
function validateUsers(users: User[]) {
for (const user of users) {
if (!user.email) {
return { valid: false, error: 'Email required' }
}
if (!user.name) {
return { valid: false, error: 'Name required' }
}
}
return { valid: true }
}
7.9 Hoist RegExp Creation
Impact: LOW-MEDIUM (avoids recreation)
Don't create RegExp inside render. Hoist to module scope or memoize with useMemo().
Incorrect: new RegExp every render
function Highlighter({ text, query }: Props) {
const regex = new RegExp(`(${query})`, 'gi')
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
Correct: memoize or hoist
const EMAIL_REGEX = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
function Highlighter({ text, query }: Props) {
const regex = useMemo(
() => new RegExp(`(${escapeRegex(query)})`, 'gi'),
[query]
)
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
Warning: global regex has mutable state
const regex = /foo/g
regex.test('foo') // true, lastIndex = 3
regex.test('foo') // false, lastIndex = 0
Global regex (/g) has mutable lastIndex state:
7.10 Use Loop for Min/Max Instead of Sort
Impact: LOW (O(n) instead of O(n log n))
Finding the smallest or largest element only requires a single pass through the array. Sorting is wasteful and slower.
Incorrect (O(n log n) - sort to find latest):
interface Project {
id: string
name: string
updatedAt: number
}
function getLatestProject(projects: Project[]) {
const sorted = [...projects].sort((a, b) => b.updatedAt - a.updatedAt)
return sorted[0]
}
Sorts the entire array just to find the maximum value.
Incorrect (O(n log n) - sort for oldest and newest):
function getOldestAndNewest(projects: Project[]) {
const sorted = [...projects].sort((a, b) => a.updatedAt - b.updatedAt)
return { oldest: sorted[0], newest: sorted[sorted.length - 1] }
}
Still sorts unnecessarily when only min/max are needed.
Correct (O(n) - single loop):
function getLatestProject(projects: Project[]) {
if (projects.length === 0) return null
let latest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt > latest.updatedAt) {
latest = projects[i]
}
}
return latest
}
function getOldestAndNewest(projects: Project[]) {
if (projects.length === 0) return { oldest: null, newest: null }
let oldest = projects[0]
let newest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt < oldest.updatedAt) oldest = projects[i]
if (projects[i].updatedAt > newest.updatedAt) newest = projects[i]
}
return { oldest, newest }
}
Single pass through the array, no copying, no sorting.
Alternative: Math.min/Math.max for small arrays
const numbers = [5, 2, 8, 1, 9]
const min = Math.min(...numbers)
const max = Math.max(...numbers)
This works for small arrays but can be slower for very large arrays due to spread operator limitations. Use the loop approach for reliability.
7.11 Use Set/Map for O(1) Lookups
Impact: LOW-MEDIUM (O(n) to O(1))
Convert arrays to Set/Map for repeated membership checks.
Incorrect (O(n) per check):
const allowedIds = ['a', 'b', 'c', ...]
items.filter(item => allowedIds.includes(item.id))
Correct (O(1) per check):
const allowedIds = new Set(['a', 'b', 'c', ...])
items.filter(item => allowedIds.has(item.id))
7.12 Use toSorted() Instead of sort() for Immutability
Impact: MEDIUM-HIGH (prevents mutation bugs in React state)
.sort() mutates the array in place, which can cause bugs with React state and props. Use .toSorted() to create a new sorted array without mutation.
Incorrect: mutates original array
function UserList({ users }: { users: User[] }) {
// Mutates the users prop array!
const sorted = useMemo(
() => users.sort((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
Correct: creates new array
function UserList({ users }: { users: User[] }) {
// Creates new sorted array, original unchanged
const sorted = useMemo(
() => users.toSorted((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
Why this matters in React:
-
Props/state mutations break React's immutability model - React expects props and state to be treated as read-only
-
Causes stale closure bugs - Mutating arrays inside closures (callbacks, effects) can lead to unexpected behavior
Browser support: fallback for older browsers
// Fallback for older browsers
const sorted = [...items].sort((a, b) => a.value - b.value)
.toSorted() is available in all modern browsers (Chrome 110+, Safari 16+, Firefox 115+, Node.js 20+). For older environments, use spread operator:
Other immutable array methods:
-
.toSorted()- immutable sort -
.toReversed()- immutable reverse -
.toSpliced()- immutable splice -
.with()- immutable element replacement
8. Advanced Patterns
Impact: LOW
Advanced patterns for specific cases that require careful implementation.
8.1 Store Event Handlers in Refs
Impact: LOW (stable subscriptions)
Store callbacks in refs when used in effects that shouldn't re-subscribe on callback changes.
Incorrect: re-subscribes on every render
function useWindowEvent(event: string, handler: () => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
}, [event, handler])
}
Correct: stable subscription
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: () => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
window.addEventListener(event, onEvent)
return () => window.removeEventListener(event, onEvent)
}, [event])
}
Alternative: use useEffectEvent if you're on latest React:
useEffectEvent provides a cleaner API for the same pattern: it creates a stable function reference that always calls the latest version of the handler.
8.2 useLatest for Stable Callback Refs
Impact: LOW (prevents effect re-runs)
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
Implementation:
function useLatest<T>(value: T) {
const ref = useRef(value)
useEffect(() => {
ref.current = value
}, [value])
return ref
}
Incorrect: effect re-runs on every callback change
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
useEffect(() => {
const timeout = setTimeout(() => onSearch(query), 300)
return () => clearTimeout(timeout)
}, [query, onSearch])
}
Correct: stable effect, fresh callback
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}