- Add complete session documentation in past-sessions/ - Update NEXT-SESSION.md with Frontend + Agents roadmap - Add K8s manifests for backend deployment - Update README with past-sessions reference Session achievements: - Implemented complete REST API (projects, tasks, agents) - Implemented MCP Server with 4 core tools - Integrated Gitea API client - Successfully deployed backend to K8s at api.fuq.tv - Fixed MariaDB permissions and secrets - CI/CD pipeline working (build #7 successful) Co-Authored-By: Claude Sonnet 4.5 (1M context) <noreply@anthropic.com>
15 KiB
📋 Próxima Sesión - Frontend Dashboard & Primer Agente
Objetivo: Implementar Frontend Dashboard y desplegar primer agente Claude Code funcional
Tiempo estimado: 2-3 horas
Sesión anterior: past-sessions/2026-01-19-backend-api-implementation.md
✅ PRE-REQUISITOS (Verificar antes de empezar)
# 1. Backend funcionando
curl -s https://api.fuq.tv/api/health | grep "ok"
# Debe retornar: "status":"ok"
# 2. Base de datos accesible
export KUBECONFIG=~/.kube/aiworker-config
kubectl exec -n control-plane mariadb-0 -- mariadb -uaiworker -pAiWorker2026_UserPass! aiworker -e "SELECT COUNT(*) FROM projects;"
# Debe mostrar conteo de proyectos
# 3. Cluster operativo
kubectl get nodes
# 6 nodos Ready
# 4. Registry accesible
curl -s -H "Authorization: token 159a5de2a16d15f33e388b55b1276e431dbca3f3" \
"https://git.fuq.tv/api/v1/packages/admin?type=container" | grep aiworker-backend
# Debe mostrar paquete
Si algo falla: Revisar TROUBLESHOOTING.md o última sesión en past-sessions/
🎯 PASO 1: Crear Frontend Base con Bun (45 min)
1.1 Crear estructura de frontend
cd /Users/hectorros/projects/teamSquadAiWorker
mkdir -p frontend/{src,public}
cd frontend
# Inicializar proyecto Bun
bun init -y
1.2 Instalar dependencias
# React + TypeScript
bun add react react-dom
bun add -d @types/react @types/react-dom
# Routing
bun add react-router-dom
# UI Components (elegir uno)
# Opción A: Shadcn/UI + Tailwind
bun add -d tailwindcss postcss autoprefixer
bunx tailwindcss init -p
# Opción B: MUI
bun add @mui/material @emotion/react @emotion/styled
# API Client
bun add axios
# Auth
bun add lucia
1.3 Crear componentes básicos
Estructura necesaria:
frontend/src/
├── index.html # HTML entry point
├── main.tsx # React root
├── App.tsx # Main app component
├── components/
│ ├── Layout.tsx
│ ├── ProjectList.tsx
│ ├── TaskList.tsx
│ └── AgentStatus.tsx
├── api/
│ └── client.ts # Axios client para backend
└── types/
└── index.ts # TypeScript types
1.4 Configurar Bun.serve() para frontend
Crear frontend/server.ts:
import index from './src/index.html'
Bun.serve({
port: 3001,
routes: {
'/': index,
'/api/*': {
GET: async (req) => {
// Proxy to backend
const path = new URL(req.url).pathname.replace(/^\/api/, '')
return fetch(`https://api.fuq.tv/api${path}`)
}
}
},
development: {
hmr: true,
console: true
}
})
1.5 Probar localmente
bun run server.ts
# Open http://localhost:3001
Debe mostrar:
- Dashboard básico
- Lista de proyectos (conectado a API)
- Sin auth por ahora (agregar en siguiente paso)
🎯 PASO 2: Implementar Autenticación Básica (30 min)
2.1 Configurar Lucia Auth
Referencia: https://github.com/lucia-auth/lucia
Crear frontend/src/lib/auth.ts:
import { Lucia } from "lucia"
import { BunSQLiteAdapter } from "@lucia-auth/adapter-sqlite"
// Por ahora: SQLite local
// Después: Migrar a MariaDB del cluster
const adapter = new BunSQLiteAdapter(db)
export const lucia = new Lucia(adapter, {
sessionCookie: {
attributes: {
secure: process.env.NODE_ENV === "production"
}
}
})
2.2 Crear páginas de auth
frontend/src/pages/
├── Login.tsx
├── Register.tsx
└── Dashboard.tsx
Features mínimas:
- Login con email/password
- Registro de nuevos usuarios
- Logout
- Protected routes (redirect si no autenticado)
2.3 Integrar con backend
Backend debe tener (agregar si no existe):
POST /api/auth/register
POST /api/auth/login
POST /api/auth/logout
GET /api/auth/me
Nota: Si estos endpoints no existen, agregarlos al backend en esta sesión.
🎯 PASO 3: Build y Deploy de Frontend (30 min)
3.1 Crear Dockerfile para frontend
Crear frontend/Dockerfile:
FROM oven/bun:1.3.6
WORKDIR /app
COPY package.json bun.lockb ./
RUN bun install --frozen-lockfile
COPY . .
RUN bun build src/main.tsx --outdir ./dist --target browser
EXPOSE 3001
CMD ["bun", "run", "server.ts"]
3.2 Crear repo en Gitea
cd frontend
# Inicializar git
git init
git add .
git commit -m "Initial frontend implementation
- React dashboard with project/task views
- Lucia auth integration
- API client for backend
- Bun.serve() with HMR
Co-Authored-By: Claude Sonnet 4.5 (1M context) <noreply@anthropic.com>"
# Crear repo en Gitea (via API o UI)
curl -X POST https://git.fuq.tv/api/v1/user/repos \
-H "Authorization: token 159a5de2a16d15f33e388b55b1276e431dbca3f3" \
-H "Content-Type: application/json" \
-d '{"name":"aiworker-frontend","description":"AiWorker Frontend Dashboard","private":false,"auto_init":false}'
# Agregar remote y push
git remote add origin https://git.fuq.tv/admin/aiworker-frontend.git
git push -u origin main
3.3 Crear workflow de CI/CD
Crear .gitea/workflows/build.yml:
name: Build and Push Frontend
on:
push:
branches: [main]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Build Docker image
run: docker build -t git.fuq.tv/admin/aiworker-frontend:${{ gitea.sha }} .
- name: Tag as latest
run: docker tag git.fuq.tv/admin/aiworker-frontend:${{ gitea.sha }} git.fuq.tv/admin/aiworker-frontend:latest
- name: Login to registry
run: echo "${{ secrets.REGISTRY_PASSWORD }}" | docker login git.fuq.tv -u admin --password-stdin
- name: Push images
run: |
docker push git.fuq.tv/admin/aiworker-frontend:${{ gitea.sha }}
docker push git.fuq.tv/admin/aiworker-frontend:latest
3.4 Deploy en K8s
Crear k8s/frontend/:
k8s/frontend/
├── deployment.yaml
├── service.yaml
└── ingress.yaml
deployment.yaml:
apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend
namespace: control-plane
spec:
replicas: 2
selector:
matchLabels:
app: frontend
template:
spec:
imagePullSecrets:
- name: gitea-registry
containers:
- name: frontend
image: git.fuq.tv/admin/aiworker-frontend:latest
ports:
- containerPort: 3001
env:
- name: BACKEND_URL
value: http://backend.control-plane.svc.cluster.local:3000
ingress.yaml:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: frontend
namespace: control-plane
annotations:
cert-manager.io/cluster-issuer: letsencrypt-prod
spec:
tls:
- hosts:
- app.fuq.tv
secretName: frontend-tls
rules:
- host: app.fuq.tv
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: frontend
port:
number: 3001
Deploy:
kubectl apply -f k8s/frontend/
kubectl get pods -n control-plane -l app=frontend
kubectl get ingress -n control-plane frontend
Verificar:
curl -I https://app.fuq.tv
# HTTP/2 200
🎯 PASO 4: Primer Agente Claude Code (45 min)
4.1 Entender arquitectura de agentes
Referencia: docs/05-agents/, AGENT-GUIDE.md
Agente Claude Code es:
- Un pod en K8s namespace
agents - Corre
claude-codeCLI conectado vía MCP - Tiene acceso al código vía Git clone
- Reporta progreso al backend vía MCP tools
4.2 Crear Dockerfile del agente
Crear agents/Dockerfile:
FROM node:20-alpine
# Instalar claude-code CLI
RUN npm install -g @anthropic/claude-code
# Instalar herramientas de desarrollo
RUN apk add --no-cache git bash curl
# Configurar MCP
COPY mcp-config.json /root/.config/claude-code/config.json
WORKDIR /workspace
CMD ["claude-code", "--mcp-server", "$BACKEND_MCP_URL"]
4.3 Crear configuración MCP
Crear agents/mcp-config.json:
{
"mcpServers": {
"aiworker": {
"url": "http://backend.control-plane.svc.cluster.local:3100",
"tools": [
"get_next_task",
"update_task_status",
"create_branch",
"create_pull_request"
]
}
}
}
4.4 Crear deployment del agente
Crear k8s/agents/agent-deployment.yaml:
apiVersion: apps/v1
kind: Deployment
metadata:
name: claude-agent
namespace: agents
spec:
replicas: 1 # Empezar con 1 agente
selector:
matchLabels:
app: claude-agent
template:
metadata:
labels:
app: claude-agent
spec:
containers:
- name: agent
image: git.fuq.tv/admin/aiworker-agent:latest
env:
- name: ANTHROPIC_API_KEY
valueFrom:
secretKeyRef:
name: agent-secrets
key: anthropic-api-key
- name: BACKEND_MCP_URL
value: http://backend.control-plane.svc.cluster.local:3100
- name: GITEA_URL
value: https://git.fuq.tv
- name: GITEA_TOKEN
valueFrom:
secretKeyRef:
name: agent-secrets
key: gitea-token
- name: AGENT_ID
valueFrom:
fieldRef:
fieldPath: metadata.name
4.5 Crear secret para agente
kubectl create secret generic agent-secrets -n agents \
--from-literal=anthropic-api-key='<TU_API_KEY>' \
--from-literal=gitea-token='159a5de2a16d15f33e388b55b1276e431dbca3f3'
4.6 Desplegar agente
# Crear namespace
kubectl create namespace agents
# Agregar registry secret
kubectl create secret docker-registry gitea-registry -n agents \
--docker-server=git.fuq.tv \
--docker-username=admin \
--docker-password=7401126cfb56ab2aebba17755bdc968c20768c27
# Deploy
kubectl apply -f k8s/agents/
kubectl get pods -n agents
kubectl logs -f -n agents deployment/claude-agent
4.7 Verificar agente registrado
# El agente debe auto-registrarse al iniciar
curl -s https://api.fuq.tv/api/agents | jq
# Debe mostrar agente con status "idle"
🎯 PASO 5: Test End-to-End del Flujo Completo (30 min)
5.1 Crear tarea de prueba
# 1. Crear proyecto
PROJECT_ID=$(curl -s -X POST https://api.fuq.tv/api/projects \
-H "Content-Type: application/json" \
-d '{
"name": "test-agent-flow",
"description": "Test de flujo completo con agente",
"giteaOwner": "admin",
"giteaRepoName": "test-agent-flow"
}' | jq -r '.data.id')
echo "Project ID: $PROJECT_ID"
# 2. Crear tarea
TASK_ID=$(curl -s -X POST https://api.fuq.tv/api/tasks \
-H "Content-Type: application/json" \
-d "{
\"projectId\": \"$PROJECT_ID\",
\"title\": \"Add hello world endpoint\",
\"description\": \"Create a simple GET /hello endpoint that returns 'Hello World'\",
\"priority\": \"high\"
}" | jq -r '.data.id')
echo "Task ID: $TASK_ID"
5.2 Monitorear logs del agente
# Terminal 1: Logs del agente
kubectl logs -f -n agents deployment/claude-agent
# Terminal 2: Ver estado de la tarea
watch -n 2 "curl -s https://api.fuq.tv/api/tasks/$TASK_ID | jq '.data.state'"
5.3 Verificar flujo completo
Debe ocurrir:
- Agente obtiene tarea con
get_next_task - Estado cambia:
backlog→in_progress - Agente crea branch con
create_branch - Agente implementa código
- Agente crea PR con
create_pull_request - Estado cambia:
in_progress→ready_to_test - PR visible en Gitea
Verificar PR:
# Ver PRs en Gitea
curl -s -H "Authorization: token 159a5de2a16d15f33e388b55b1276e431dbca3f3" \
"https://git.fuq.tv/api/v1/repos/admin/test-agent-flow/pulls" | jq
5.4 Revisar dashboard
# Abrir dashboard
open https://app.fuq.tv
# Debe mostrar:
# - Proyecto "test-agent-flow"
# - Tarea "Add hello world endpoint" con estado "ready_to_test"
# - PR link visible
# - Agente con status "idle" (completó tarea)
🎯 PASO 6: Webhooks de Gitea (OPCIONAL, 15 min)
Si hay tiempo, configurar webhooks para notificaciones.
6.1 Crear endpoint de webhook en backend
Agregar a backend/src/api/routes/webhooks.ts:
export async function handleGiteaWebhook(req: Request) {
const event = req.headers.get('X-Gitea-Event')
const payload = await req.json()
switch (event) {
case 'pull_request':
// Notificar frontend vía WebSocket
break
case 'push':
// Trigger preview deploy
break
}
}
6.2 Configurar webhook en Gitea
# Via API
curl -X POST https://git.fuq.tv/api/v1/repos/admin/test-agent-flow/hooks \
-H "Authorization: token 159a5de2a16d15f33e388b55b1276e431dbca3f3" \
-H "Content-Type: application/json" \
-d '{
"type": "gitea",
"config": {
"url": "https://api.fuq.tv/api/webhooks/gitea",
"content_type": "json"
},
"events": ["push", "pull_request"],
"active": true
}'
📝 NOTAS IMPORTANTES
Frontend con Bun
- Bun.serve() tiene soporte nativo para React/JSX
- HTML imports automáticos:
import index from './index.html' - HMR funciona out-of-the-box con
development: { hmr: true } - No necesitas Vite/Webpack
Agentes Claude Code
- MCP es clave: Los agentes se comunican exclusivamente vía MCP
- Sin API REST: Agentes NO llaman directamente a
/api/, usan herramientas MCP - Auto-registro: Agente debe llamar
POST /api/agentsal iniciar - Heartbeat: Cada 30s llamar
POST /api/agents/:id/heartbeat
Auth y Sesiones
- Lucia Auth usa cookies HTTPOnly para sesiones
- En desarrollo: cookies inseguras (HTTP)
- En producción: cookies secure (HTTPS)
- Considerar migrar SQLite → MariaDB para auth
🐛 TROUBLESHOOTING
Si frontend no conecta con backend
# Verificar que backend esté accesible desde frontend pod
kubectl exec -n control-plane deployment/frontend -- \
curl http://backend.control-plane.svc.cluster.local:3000/api/health
Si agente no registra
# Ver logs del agente
kubectl logs -n agents deployment/claude-agent --tail=50
# Verificar connectivity a backend
kubectl exec -n agents deployment/claude-agent -- \
curl http://backend.control-plane.svc.cluster.local:3000/api/health
Si CI/CD falla
# Ver runner logs
kubectl logs -n gitea-actions deployment/gitea-runner -c runner --tail=100
# Restart runner si está stuck
kubectl rollout restart deployment/gitea-runner -n gitea-actions
✅ CHECKLIST DE SESIÓN
Al final de la sesión, verificar:
- Frontend deployado en https://app.fuq.tv
- Login/Register funcionando
- Dashboard muestra proyectos y tareas
- Agente corriendo en namespace
agents - Agente registrado en DB (visible en API)
- Flujo completo probado: Tarea → Agente → PR
- Código commitado en 2 repos (frontend, agents)
- Builds exitosos en Gitea Actions
- Imágenes en registry
- Documentación de sesión creada en
past-sessions/
🎉 META
Completado hasta ahora: Infraestructura HA + Backend API + MCP Server Esta sesión: Frontend Dashboard + Primer Agente Funcional Próximo hito: Preview Environments + Agents Pool + Monitoring
¡Casi llegamos al MVP funcional! 🚀