Files
aiworker/NEXT-SESSION.md
Hector Ros e5e039504e Rename CLUSTER-READY → K8S-CLUSTER (more direct)
Also added:
- DEVELOPMENT-WORKFLOW.md - Complete dev process documented
- Updated all references across documentation

Documentation is now centralized and direct.

Co-Authored-By: Claude Sonnet 4.5 (1M context) <noreply@anthropic.com>
2026-01-20 00:44:29 +01:00

430 lines
8.7 KiB
Markdown

# 📋 Próxima Sesión - Checklist Ejecutable
**Objetivo**: Completar Backend API y MCP Server básico
**Tiempo estimado**: 2-3 horas
---
## ✅ PRE-REQUISITOS (Verificar antes de empezar)
```bash
# 1. Cluster funcionando
export KUBECONFIG=~/.kube/aiworker-config
kubectl get nodes
# Debe mostrar 6 nodos Ready
# 2. Servicios corriendo
kubectl get pods -n control-plane
# mariadb-0: Running
# redis-xxx: Running
kubectl get pods -n gitea
# gitea-0: Running
# 3. Backend local
cd backend
bun --version
# 1.3.6
# 4. Gitea accesible
curl -I https://git.fuq.tv
# HTTP/2 200
```
**Si algo falla, consulta**: `K8S-CLUSTER.md` y `TROUBLESHOOTING.md`
---
## 🎯 PASO 1: Verificar CI/CD (15 min)
### 1.1 Revisar último build
```bash
# Ver en Gitea Actions
open https://git.fuq.tv/admin/aiworker-backend/actions
```
**Opciones**:
-**Si build exitoso**: Continuar a paso 2
-**Si build fallido**: Ver logs, corregir, push de nuevo
### 1.2 Verificar imagen en registry
```bash
# Vía UI
open https://git.fuq.tv/admin/-/packages
# Vía API
curl https://git.fuq.tv/api/v1/packages/admin/container?type=container
```
**Debe existir**: `aiworker-backend` con tag `latest`
### 1.3 Si no hay imagen, build manual
```bash
# Desde un nodo del cluster (si Docker local no funciona)
ssh root@108.165.47.225 # worker-01
cd /tmp
git clone https://git.fuq.tv/admin/aiworker-backend.git
cd aiworker-backend
docker build -t git.fuq.tv/admin/aiworker-backend:latest .
docker login git.fuq.tv -u admin -p 7401126cfb56ab2aebba17755bdc968c20768c27
docker push git.fuq.tv/admin/aiworker-backend:latest
```
---
## 🎯 PASO 2: Implementar API Routes (45 min)
### 2.1 Crear estructura de routes
```bash
cd backend/src/api
mkdir routes
# Archivos a crear:
# - routes/projects.ts
# - routes/tasks.ts
# - routes/agents.ts
# - routes/index.ts
```
### 2.2 Implementar Projects API
**Archivo**: `src/api/routes/projects.ts`
**Endpoints necesarios**:
```typescript
GET /api/projects // List all
GET /api/projects/:id // Get one
POST /api/projects // Create
PATCH /api/projects/:id // Update
DELETE /api/projects/:id // Delete
```
**Referencia**: `docs/02-backend/api-endpoints.md` (líneas 15-80)
**Conectar con Bun.serve()**:
```typescript
// En src/index.ts
import { handleProjectRoutes } from './api/routes/projects'
if (url.pathname.startsWith('/api/projects')) {
return handleProjectRoutes(req, url)
}
```
### 2.3 Implementar Tasks API
**Archivo**: `src/api/routes/tasks.ts`
**Endpoints principales**:
```typescript
GET /api/tasks // List with filters
GET /api/tasks/:id // Get details
POST /api/tasks // Create
PATCH /api/tasks/:id // Update
POST /api/tasks/:id/respond // Respond to question
```
### 2.4 Probar APIs localmente
```bash
# Terminal 1: Port-forward MariaDB
kubectl port-forward -n control-plane svc/mariadb 3306:3306 &
# Terminal 2: Port-forward Redis
kubectl port-forward -n control-plane svc/redis 6379:6379 &
# Terminal 3: Run backend
cd backend
bun run dev
# Terminal 4: Test
curl http://localhost:3000/api/health
curl http://localhost:3000/api/projects
```
---
## 🎯 PASO 3: MCP Server Básico (60 min)
### 3.1 Crear estructura MCP
```bash
mkdir -p src/services/mcp
# Archivos:
# - services/mcp/server.ts
# - services/mcp/tools.ts
# - services/mcp/handlers.ts
```
### 3.2 Implementar herramientas básicas
**Herramientas mínimas para MVP**:
1. `get_next_task` - Obtener siguiente tarea
2. `update_task_status` - Actualizar estado
3. `create_branch` - Crear rama en Gitea
4. `create_pull_request` - Crear PR
**Referencia**: `docs/05-agents/mcp-tools.md`
**Template básico**:
```typescript
// src/services/mcp/server.ts
import { Server } from '@modelcontextprotocol/sdk/server/index.js'
export class MCPServer {
private server: Server
constructor() {
this.server = new Server({
name: 'aiworker-mcp',
version: '1.0.0'
}, {
capabilities: { tools: {} }
})
this.setupHandlers()
}
// Implementar handlers...
}
```
### 3.3 Conectar MCP con Bun.serve()
**Opciones**:
- **A**: Puerto separado (3100) para MCP
- **B**: Ruta `/mcp` en mismo server
**Recomendación**: Opción A (puerto 3100)
---
## 🎯 PASO 4: Integración con Gitea (30 min)
### 4.1 Cliente API de Gitea
**Archivo**: `src/services/gitea/client.ts`
**Operaciones necesarias**:
```typescript
- createRepo(name, description)
- createBranch(owner, repo, branch, from)
- createPullRequest(owner, repo, {title, body, head, base})
- mergePullRequest(owner, repo, number)
```
**Usar**:
- Axios para HTTP requests
- Base URL: `https://git.fuq.tv/api/v1`
- Token: Variable de entorno `GITEA_TOKEN`
**Referencia**: `docs/02-backend/gitea-integration.md` (líneas 10-200)
### 4.2 Test de integración
```bash
# Crear un repo de prueba vía API
bun run src/test-gitea.ts
```
---
## 🎯 PASO 5: Deploy Backend en K8s (30 min)
### 5.1 Crear manifests
**Directorio**: `k8s/backend/`
**Archivos necesarios**:
```yaml
# deployment.yaml
# service.yaml
# ingress.yaml
# secrets.yaml
```
**Template deployment**:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: backend
namespace: control-plane
spec:
replicas: 2
selector:
matchLabels:
app: backend
template:
spec:
imagePullSecrets:
- name: gitea-registry
containers:
- name: backend
image: git.fuq.tv/admin/aiworker-backend:latest
ports:
- containerPort: 3000
- containerPort: 3100 # MCP
env:
- name: DB_HOST
value: mariadb.control-plane.svc.cluster.local
# ... más env vars
```
### 5.2 Crear secrets
```bash
kubectl create secret generic backend-secrets -n control-plane \
--from-literal=jwt-secret=your-secret \
--from-literal=anthropic-api-key=your-key
```
### 5.3 Deploy
```bash
kubectl apply -f k8s/backend/
kubectl get pods -n control-plane
kubectl logs -f deployment/backend -n control-plane
```
### 5.4 Crear Ingress
```yaml
# Para api.fuq.tv
host: api.fuq.tv
backend: backend:3000
```
### 5.5 Verificar
```bash
curl https://api.fuq.tv/api/health
```
---
## 🎯 PASO 6: Test End-to-End (15 min)
### 6.1 Crear proyecto vía API
```bash
curl -X POST https://api.fuq.tv/api/projects \
-H "Content-Type: application/json" \
-d '{
"name": "test-project",
"description": "First project"
}'
```
### 6.2 Crear tarea
```bash
curl -X POST https://api.fuq.tv/api/tasks \
-H "Content-Type: application/json" \
-d '{
"projectId": "xxx",
"title": "Test task",
"description": "First automated task"
}'
```
### 6.3 Verificar en DB
```bash
kubectl exec -n control-plane mariadb-0 -- \
mariadb -uaiworker -pAiWorker2026_UserPass! aiworker \
-e "SELECT * FROM projects; SELECT * FROM tasks;"
```
---
## 📝 NOTAS IMPORTANTES
### Desarrollo Local vs K8s
**Local (desarrollo)**:
- Port-forward para MariaDB y Redis
- `bun run dev` con hot-reload
- Cambios rápidos
**K8s (testing/producción)**:
- Build → Push → Deploy
- Migrations automáticas en startup
- Logs con kubectl
### Migrations
**SIEMPRE** automáticas en el código:
```typescript
// src/index.ts
await runMigrations() // Al inicio
```
**NUNCA** manuales con port-forward
### Secrets
**Desarrollo**: `.env` (git-ignored)
**Producción**: Kubernetes Secrets
```bash
kubectl create secret generic app-secrets -n namespace \
--from-env-file=.env.production
```
---
## 🐛 TROUBLESHOOTING
### Si backend no arranca
```bash
# Ver logs
kubectl logs -n control-plane deployment/backend
# Verificar DB connection
kubectl exec -n control-plane mariadb-0 -- \
mariadb -uaiworker -pAiWorker2026_UserPass! -e "SELECT 1"
# Verificar Redis
kubectl exec -n control-plane deployment/redis -- redis-cli ping
```
### Si Actions no funciona
```bash
# Ver runner
kubectl get pods -n gitea-actions
kubectl logs -n gitea-actions deployment/gitea-runner -c runner
# Restart runner
kubectl rollout restart deployment/gitea-runner -n gitea-actions
```
### Si Ingress no resuelve
```bash
# Verificar DNS
dig api.fuq.tv +short
# Debe mostrar: 108.165.47.221 y 108.165.47.203
# Verificar certificado
kubectl get certificate -n control-plane
# Logs de Ingress
kubectl logs -n ingress-nginx deployment/ingress-nginx-controller --tail=50
```
---
## ✅ CHECKLIST DE SESIÓN
Al final de cada sesión, verificar:
- [ ] Código commitado y pusheado a Gitea
- [ ] Build de CI/CD exitoso
- [ ] Pods corriendo en K8s
- [ ] Endpoints accesibles vía HTTPS
- [ ] Documentación actualizada
- [ ] Credenciales documentadas en lugar seguro
- [ ] Tests básicos pasando
---
## 🎉 META
**Completado**: Infraestructura HA + Backend base
**Próximo hito**: Backend API funcional + MCP Server
**Hito final**: Sistema completo de agentes autónomos
**¡Excelente progreso! Sigue el roadmap y lo tendrás listo pronto! 🚀**